The 355 nm laser flash photolysis of argon-saturated pH 8 phosphate buffer solutions of the fluoroquinolone antibiotic flumequine produces a transient triplet state with a maximum absorbance at 575 nm where the molar absorptivity is 14 000 M−1 cm−1. The quantum yield of triplet formation is 0.9. The transient triplet state is quenched by various Type-1 photodynamic substrates such as tryptophan (TrpH), tyrosine, N-acetylcysteine and 2-deoxyguanosine leading to the formation of the semireduced flumequine species. This semireduced form has been readily identified by pulse radiolysis of argon-saturated pH 8 buffered aqueous solutions by reaction of the hydrated electrons and the CO2·− radicals with flumequine. The absorption maximum of the transient semireduced species is found at 570 nm with a molar absorptivity of 2500 M−1 cm−1. In argon-saturated buffered solutions, the semireduced flumequine species formed by the reaction of the flumequine triplet with TrpH stoichiometrically reduces ferricytochrome C (Cyt Fe3 ) under steady state irradiation with ultraviolet-A light. In the presence of oxygen, O2·− is formed but the photoreduction of Cyt Fe3 by O2·− competes with an oxidizing pathway which involves photo-oxidation products of TrpH.